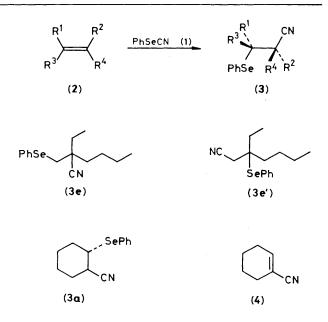
871

Cyanoselenenylation of Olefinst


Shuji Tomoda,* Yoshito Takeuchi, and Yujiro Nomura

Department of Chemistry, College of General Education, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153, Japan

The reaction of simple olefins with phenyl selenocyanate in the presence of a Lewis acid provided 2-phenylseleno carbonitriles, the vicinal cyanoselelenylation products, stereoselectively in excellent yields.

Despite many examples of addition reactions of organoselenium reagents across unactivated carbon-carbon double bonds,¹ cyanoselenenylation of simple olefins has hitherto not been reported. We now report that phenyl selenocyanate (1) undergoes efficient vicinal cyanoselenenylation with simple olefins in the presence of a Lewis ac id catalyst.

Although (1), a chromatographically stable liquid,² reacts rapidly with nucleophilic olefins, such as enamines, without catalyst,³ it is completely inert toward unactivated olefins. However, it was expected that (1) might react with simple olefins (2) in the presence of an appropriate catalyst to afford 2-phenylselenocarbonitriles (3). After thorough screening studies of catalysts, Lewis acids, such as SnCl₄, BF₃, and AlCl₃ were found to be more effective⁴ than the soft transition metal salts which have been frequently employed to activate organoselenium compounds.⁵ Of these Lewis acid catalysts, the best results were obtained with SnCl₄ (Table 1). Thus, cyclohexene (2a) reacted with (1), in the presence of 1 mol. equiv. SnCl₄ in dry dichloromethane, within 4 h at 15 °C under argon to provide a single stereoisomer of 2-phenylselenocyclohexanecarbonitrile (3a) in 96% yield after column chromatography on silica gel. Its structure was elucidated by spectroscopic methods and elemental analysis. The presence of a cyano group was clearly indicated by i.r. (2245 cm⁻¹, sharp medium band) and ¹³C n.m.r. spectroscopy (& 120.9 p.p.m.).

The *trans*-stereochemistry between the phenylseleno and cyano groups was suggested by a large coupling constant (J 9.0 Hz) between H-1 (δ 2.53) and H-2 (δ 3.16) in the ¹H n.m.r. spectrum.

[†] For Part 4 of the series Organoselenium Chemistry, see ref. 5(b).

Table 1. Reactions of olefins (2) with phenyl selenocyanate (1).ª

							(3)	
							¹³ C N.m.r. ^e	I.r. ^d
Compound	R1	\mathbb{R}^2	R³	R4	Catalyst	% Yield ^b	δ(C≡N)/p.p.m.	$\nu(C=N)/cm^{-1}$
(2a)	[CH ₂] ₄		Н	Н	SnCl₄ BF₃∙Ét₂O AlCl₃	96 84 74	120.9	2245
(2b)	-[CH	[₂] ₂ _	н	н	SnCl₄	93	121.5	2250
(2c)	-[CH ₂] ₅ -		Н	Н	SnCl₄	95	122.0	2245
(2d)	$\mathbf{Pr^n}$	Ĥ	Н	$\mathbf{P}r^{n}$	SnCl₄	94	120.3	2240
(2e)	Pr ⁿ	Pr ⁿ	н	Н	SnCl₄	90	120.4	2240
(2f)	Н	Et	Н	Bu ⁿ	SnCl_4^*	91 ^e	122.3 (major) ^r 117.2 (minor)	2240
(2 g)	-[CH ₂] ₄ -		Me	Н	$SnCl_4$	87e	123.6 (major) ^r 120.1 (minor)	2230
(2h)	Н	$C_{6}H_{13}$	Н	н	${\rm SnCl}_4$	83 ^e	121.2 $(minor)^{t}$ 118.0 $(major)$	2250

^a All reactions were performed at 15 $^{\circ}$ C under dry argon in dichloromethane (distilled from calcium hydride under argon) using an equimolar ratio of (1), (2), and catalyst. ^bIsolated yield after column chromatography on silica gel. ^eIn CDCl₃ with tetramethylsilane as an internal standard. ^d Liquid film. ^e Combined yield of inseparable regioisomer mixture. ^fSee text for isomer ratio.

The results for the reactions of other olefins are also included in Table 1. The yields were uniformly excellent when SnCl₄ was used as the catalyst. Each cyclic olefin [cyclopentene (2b) and cycloheptene (2c)] gave a single stereoisomer within the limits of ¹³C n.m.r. detection, suggesting again that the reactions are stereoselective. That the reaction is stereospecific was clearly demonstrated by using trans- and cisoct-4-enes ([2d) and (2e)]; the respective phenylseleno carbonitriles [(3d) and (3e)], each obtained as a single stereoisomer, were shown by ¹³C n.m.r. to be different from each other. As expected, 2-ethylhex-1-ene (2f) afforded a mixture of two regioisomers, (3e) (the tertiary carbonitrile) and (3e') (the primary carbonitrile), in the ratio 86:14 (¹H n.m.r.). The preponderant formation of the Markovnikov product (3e) is interesting in that the reaction may serve as a useful route to tertiary carbonitriles to which access is difficult. Similarly, other unsymmetrical alkenes [1-methylcyclohex-1-ene (2g) and oct-1-ene (2h)] gave regioisomer mixtures. In the case of (2g), the major isomer (83%) was the tertiary carbonitrile (Markovnikov product), whereas (2h) afforded the primary carbonitrile (anti-Markovnikov product) as the major regioisomer (85%). The regiochemical assignments of these products were based on ¹H and ¹³C n.m.r. spectra (primary CN; δ 117–118, secondary and tertiary CN; δ 120–123 p.p.m.).

These results indicate that cyanoselenenylation of olefins with phenyl selenocyanate (1) would probably proceed by a mechanism involving completely stereospecific anti-addition across the carbon–carbon double bond. The reactions may be considered as a selenium version of hydrocyanation of an unactivated carbon-carbon double bond, which is relatively rare and in general requires sensitive catalysts.⁶ The products (3) can be readily converted into α,β -unsaturated carbonitriles by selenoxide *syn*-elimination. For example, (3a) afforded cyclohex-1-enecarbonitrile (4) in 93% isolated yield upon oxidation with 30% aqueous hydrogen peroxide in dichloromethane (room temp., 30 min).

We thank the Ministry of Education (Japanese Government) for the purchase of a JEOL FX-90Q spectrometer which was used in this work.

Received, 27th April 1982; Com. 474

References

- (a) H. J. Reich, Acc. Chem. Res., 1979, 12, 22; (b) D. L. J. Clive, Tetrahedron, 1978, 34, 1049; (c) K. C. Nicolaou, Tetrahedron, 1981, 37, 4097.
- 2 (a) O. Behaghel and H. Seibert, Ber., 1932, 65, 812; (b) S. Tomoda, Y. Takeuchi, and Y. Nomura, Chem. Lett., 1981, 1069.
- 3 S. Tomoda, Y. Takeuchi, and Y. Nomura, *Tetrahedron Lett.*, 1982, 23, 1361.
- 4 Organoselenium species have been activated by Lewis acids; W. P. Jackson, S. V. Ley, and J. A. Morton, (a), *Tetrahedron Lett.*, 1981, 22, 2601; (b) J. Chem. Soc., Chem. Commun., 1980, 1028.
- 5 (a) A. Toshimitsu, T. Aoai, S. Uemura, and M. Okano, J. Org. Chem., 1981, 46, 3021; (b) S. Tomoda, Y. Takeuchi, and Y. Nomura, Chem. Lett., 1982, 253.
- 6 Recent examples; (a) P. S. Elmes and W. R. Jackson, J. Am. Chem. Soc., 1979, 101, 6128; (b) J. Backvall and O. S. Andell, J. Chem. Soc., Chem. Commun., 1981, 1098.